Exact real computer arithmetic with continued fractions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Statistics and Continued Fractions

In this paper we investigate an extension to Vuillemin's work on continued fraction arithmetic [Vuillemin 87, Vuillemin 88, Vuillemin 90], that permits it to evaluate the standard statistical distribution functions. By this we mean: the normal distribution, the -distribution, the t-distribution, and, in particular, the F-distribution. The underlying representation of non-rational computable rea...

متن کامل

Irrationality Measures for Continued Fractions with Arithmetic Functions

Let f(n) or the base-2 logarithm of f(n) be either d(n) (the divisor function), σ(n) (the divisor-sum function), φ(n) (the Euler totient function), ω(n) (the number of distinct prime factors of n) or Ω(n) (the total number of prime factors of n). We present good lower bounds for ∣ ∣M N − α ∣ ∣ in terms of N , where α = [0; f(1), f(2), . . .].

متن کامل

Exact Real Arithmetic ?

One possible approach to exact real arithmetic is to use linear fractional transformations to represent real numbers and computations on real numbers. We show how to determine the digits that can be emitted from a transformation, and present a criterion which ensures that it is possible to emit a digit. Using these results, we prove that the obvious algorithm to compute n digits from the applic...

متن کامل

Computer Arithmetic Based on Continued Logarithms

The paper deals with efficient hardware implementation of exact arithmetic. This kind of arithmetic represents the most convenient approach to scientific computing, but the complexity of underlying algorithms and thus the performance issues limit the set of solvable problems. We demonstrate on a particular example of continued logarithms that direct hardware implementation may help to achieve c...

متن کامل

Exact Real Arithmetic with Automatic Error

The common approach to real arithmetic on computers is floating point arithmetic, which can produce erroneous results due to roundoff errors. An alternative is exact real arithmetic and in this project such arithmetic is implemented in the well-known computer system Mathematica by the use of constructive real numbers. All basic operations are implemented as well as the common elementary functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Computers

سال: 1990

ISSN: 0018-9340

DOI: 10.1109/12.57047